Dr. Vasantraodada Patil Shetkari Shikshan Mandal's																
Padmabhooshan Vasantraodada Patil Institute of Technology, Budhgaon																
Department of Electrical Engineering (MTech)																
	M Tech Course Outcomes(COs)															
	Course Outcomes(COs)	CO-PO Mapping														
M.Tech																
Course Name:	Distributed Generation and Microgrid	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand exploration of renewable energy sources	1	2	3												
CO2	Understand philosophy of distributed generation	2		2		3	2					2	3		3	
CO3	Understand various issues of DG with grid integration	3	3	1												
CO4	Understand the concept of micro grid and various power quality issues.	4				4									4	
Course	Power system modelling	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POQ	PO10	PO11	PO12	PSO1	PSO2	PSO3
Name:		101	102	105	104	103	100	107	100	10)	1010	1011	1012	1501	1502	1 505
C01	Develop power system components modelling and analyse their performance	2	3													
CO2	Perform steady state and dynamic analysis on simulation models		2		3	2					2	3		3		
CO3	Develop excitation system components modelling and analyse their performance.	3	2												2	

Course Name:	Advanced Power Electronics	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Discuss2 the behavior of power semiconductor devices operated as power switches.	3	2	1	1								1			
CO2	Analyze4 operation of various power converters	2	2	3	1								2			
CO3	Examine3 various advanced power conversion techniques	2	3	2	1								1			
Course Name:	Modern Control System	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

C01	Analyze dynamics of a linear system using pole placement technique.	2	3													
CO2	Determination of stability of a linear system using pole- placement technique.		2		3	2					2	3		3		
CO3	Analysis and design of non linear , optimal and digital control system.	3	2												2	
Course Name:	Renewable Energy Systems	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand current energy scenario and their impact on environment.	1		2									3		1	
CO2	Understand the process of power generation by renewable energy sources.		1		3								2			
CO3	Understand various forms of energy storage and their importance.	3	2			1		2							2	
Course Name:	Power Electronics for Renewable Energy System	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Provide knowledge about the stand alone and grid connected renewable energy systems.	2	3								2			2		
CO2	Equip with required skills to derive the criteria for the design of power converters for renewable energy applications.		2	3							3	1		2		
CO3	Analyse and comprehend the various operating modes of wind electrical generators and solar	2	3	3								2		1		
CO4	Desgin different power converters name ac to dc and dc to dc , ac to ac converter for RES	3	2	3					3			2		3		
Course Name:	Communication skills	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	communicate effectively in the activity and with the engineering community and for society	3	1										2	3		
CO2	in order to Comprehend and write effective reports design documentation	3	3		3								2	3		
CO3	to make a pic to presentation and give or receive clear instructions	3	2		2								2	2		
Course Name:	AC/DC Drives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	To examine3 the dynamics of Electrical Drives system.	3	2	1	1								1			

CO2	To apply3 various control techniques for controlling the speed of DC and IM motors.	2	2	3	1								2	3		
CO3	To discuss2 vector control of Induction Motor drive.	2	3	2	1								1		2	
Course Name:	Advance Power System Protection	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	To understand various Optimization Techniques applicable in Power System	2	3													
CO2	To understand the concept of power System Security.		2		3	2					2	3		3		
CO3	To apply state estimation in power system.	3	2												2	
CO4	To understand optimal power flow solution methods	3										2				
Course Name:	Energy Management and Auditing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Identify and describe the basic principles and methodologies adopted in energy audit of utility.	2	3													
CO2	Describe the energy performance evaluation of some common electrical and thermal installation and identify energy saving opportunities.		2		3	2					2	3		3		
CO3	Analyze the data collected during performance evaluation and recommend energy saving measures.	3	2												2	
Course Name:	Electric and Hybrid Vehicle	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Explain2 the architecture and performance parameters of Electric and Hybrid Vehicles.	3	2				2						2			
CO2	Illustrate2 electric propulsion and motor control strategies used in EV and HEV systems.	3	3										2			
CO3	Apply3 the knowledge of energy storage systems to identify suitable technologies for electric vehicles.	3	3				2						2			
CO4	Identify3 the key components and basic configuration of electric or hybrid vehicle systems using solar and fuel cell technologies.	2	2										2			